ZL9NSQ Demo Board 产品手册(V2.0)

目录

1 功能描述:	4
2 开发板:	5
2.1.7L9NSO 引脚	
" 销售联系方式:	10

图片

图 1 ZL9NSQ 功能框图	4
图表 2 ZL9NSO 俯视图	5
图表 3 71 9NSO 仰视图	5
	0

手册修订历史

版本号	说明	日期
1.0	初版	2024-01-21
2.0	针对新版 PCB 修正	2024-03-25

1 功能描述:

ZL9NSQ 是一款集成了三轴加速计、三轴陀螺仪、三轴磁力计的 3D 姿态传感系统级芯片。芯片内部集成 32 位 ARM® Cortex[™]-M4f+ 微处理器自研 IMU Motion Engine 算法, 2.4G 无线收发器及封装天线。利用先进的信号处理算法来 处理高速采样的内部传感器数据, 以提供准确可靠的 四元数、欧拉角、校准加速度和校准角速度等精确三维姿态信息。

ZL9NSQ 的核心是IMU Motion Engine 软件。IMU Motion Engine 软件为一套完整的复合数据融合算法,包含姿态解算、 干扰判断、在线校准等算法及数据通讯软件。数据通讯软件基于天璺科技 ZLBUS 统一通讯协议实现电源管理、参数配置, 数据通讯等功能,用户无需编程既可通过调试软件与系统主机通信获取所需的 3D 姿态信息,同时用户亦可通过提供的 SDK 使用 Python/C++等编程语言实现与 ZL9NSQ 的数据交换,大幅降低三维姿态应用的开发难度。

图 1 ZL9NSQ 功能框图

2开发板:

2.1 ZL9NSQ 开发板

SIP Demo 板是为了便于用于快速开发设计的原型验证板,包含了 Type-C 接口(仅用于供电和锂电池充电)、电池接口、电池充放电电路、指示 LED 灯最小化系统电路。如用于需了解更多功能请参考"ZL9NSQ DataSheet"。

图表 2 ZL9NSQ 俯视图

2.2 ZL9NSQ 开发板接口及引脚描述

0000

开发板对外接口

|--|--|

P2	锂电池接口,外接 3.7V 锂电池
11	USB Type-C 接口,电池充电以及 UART 调试接口
P3	模组管脚输入输出功能接口
Ρ4	模组管脚输入输出功能接口

开发板拨码开关

拨码开关接口	描述
拨码开关 S1	硬件模式配置 MODE0,MODE1 上下拉配置, 默认情况下, MODE0,MODE1 为 NC,
	即低电平。如果需要把 MODE0,MODE1 配置为高电平,则对应把 S1 拨码开关
	往上拨码,即为高电平。
拨码开关 S3	默认拨码开关下拨,即 uart/I2C 连接到 P4 管脚上。J1 USB 的 uart 功能失效。
	如果要用到 J1 USB 的 uart 功能,则需要把拨码开关往上拨码即可。

排座 P3 引脚定义	描述
GND	电源地
MODEO	硬件模式配置
MODE1	硬件模式配置
AIN2	模拟输入 (ADC)
AIN1	模拟输入 (ADC)
SPI_CLK	SPI_CLK (master)
SPI_MISO	SPI_MISO (master)
SPI_MOSI	SPI_MOSI (master)
SPI_CS	SPI_CS (master)
VCC_3V3	板载 LDO 输出电源 3.3v

排座 P4 引脚定义	描述
VCC_5V	供电电源
SW_EN	系统 3.3V 电源使能
AIN4	模拟输入 (ADC)
AIN5	模拟输入 (ADC)
RESET	芯片模组复位管脚,默认可以不接
10_9	自定义 IO
IO_10	自定义 IO
UART_TX / I ² C_SCL	I ² C Slave 或者 UART
UART_RX / I ² C_SDA	I ² C Slave 或者 UART
GND	电源地

3.操作说明

3.1 供电

ZL9NSQ 开发板的供电方式, 可以采用 P2 电池供电, 也可以采用 USB Type-C 供电或者开发板 P4 的 VCC_5V

对开发板进行供电。如果 P2 接口已接入电池,开发板的充电电路会对电池进行充电,并且 LED 灯 D2 会亮 黄灯,电池充满电后,D2 熄灭。

蓝牙输出模式下,供电后,长按 S2 按键 2 秒后,RGB 三色灯 D1 不停闪烁绿灯进行蓝牙广播。如果是在 SPI 数据传输模式下,供电后,长按 S2 按键 2 秒后,RGB 三色灯 D1 闪烁蓝灯(此模式下蓝牙功能失效)。

运行状态	LED 灯状态或颜色
长按 52 按键后	D1 刚开始亮红灯,然后不停闪烁绿灯进行蓝牙广播
蓝牙广播	D1 不停闪烁绿灯
蓝牙连接成功(或者 SPI 数据传输模式下)	D1 闪烁蓝灯(1HZ 频率闪烁)
锂电池充电	D2 长亮黄灯,充满后 D2 自动熄灭

3.2 按键 S2 使用说明

关机状态下,长按按键 S2 约 2 秒,模块开机。开机状态下,长按按键 S2 约 2 秒,模块关机。如果用户不用开关机 S2 按键,那么用户可以通过排针 P4 管脚的 SW_EN 进行控制,高电平模块开机,低电平模块关机。

3.3 模块供电说明

开发板集成锂电池充放电管理(额定充电电压 4.2V),以及 1 路 3.3V LDO 电源管理。外部输入电源,通过 USB Type-C 或者排针 P4 的 VCC_5V 管脚对锂电池进行充电,充电状态下,LED 灯 D2 长亮黄灯,待电池满 电后,LED 灯 D2 自动熄灭。排针 P3 的 VCC_3V3 管脚为系统 LDO 的 3.3V 输出管脚。

3.4 数据接口

开发板支持三种接口的数据传输方式,即蓝牙、UART、SPI。默认情况下,配置拨码开关 S1 的 MODE0、 MODE1 为低电平,即蓝牙 BLE 数据传输模式,数据通讯遵循 ZLBUS 通讯协议。

相关数据接口配置如下表:

Mode1	Mode0	指令配置接口	数据输出接口
Х	Х	UART	RF
Low (default)	Low (default)	UART	RF
Low (default) Low (default) High Low		l ² C	RF
High	Low	UART	SPI
High	High	l ² C	SPI

表格 1 接口配置

备注:关于更多的 UART 配置命令、蓝牙协议、数据包格式以及 SPI 传输数据格式,请查询 ZLBUS 用户指令和 ZL9NSQ datasheet.

3.5 蓝牙连接

1.安装 ZEROLAB 的 ModuleSuite 上位机软件。安装完成后,双击 ZeroLabModuleSuite.

2. 点击扫描设备,右边的下拉框中会显示当前的蓝牙设备如下图所示,选中手头的开发板设备,点击连接。

🚺 ModuleSuiteV1	.2.4.6		
数据 帮助 关于			
	71.24.00001407.0000	44dDm V	1
归佃议留	ZL24-00001407-0000 ZL24-00001405-0000	-440Bm +	
姿态 欧拉角相关	ZL24-00001407-0000	-44dBm]
初始姿态校准			

3.连接后,设备会显示已经连接,同时开发板的 RGB 三色灯会按频率闪烁蓝灯,上位机的飞机尾翼也会闪 烁黄色的灯光,右上角相应的也会显示当前蓝牙的 MAC 地址,此时飞机姿态随着手头开发板的转动而转动。

3.6 磁场校准

设备连接后,如果需要对当前的磁场进行校准,请按以下步骤进行操作:

- 1. 点击上位机软件界面的磁场校准,进入磁场校准界面;
- 2. 点击开始校准;
- 3. 转动 ZL9NSQ 开发板,按 8 字方式进行椭球校准,待每个界面的椭球点数填充完全后,点击结束校准, 即完成了磁场校准。

10:17:45成功设置磁力计椭球拟合参数!

3.7 欧拉角相关 点击欧拉角相关界面,如果软件并没有上传欧拉角数据,那么这个时候需要转到配置页面,设置数据上传 格式。

- 1. 点击输出内容栏目的欧拉角,这个时候欧拉角选项会打上相应勾选符合。
- 2. 点击输出内容栏目的确认按钮,即完成当前欧拉角数据的上传;
- 3. 点击欧拉角相关界面,这个时候,就可以看到欧拉角曲线了;

ModuleSuiteV 数据 帮助 关于	1.2.4.6									-	
扫描设备	ZL24-00001407-0000	-41dBm 🕤	断开 已连接					Mac: cd:c0:e6:7	'b:d9:2b		
e态 欧拉角相关	磁场校准 配置 OTA升	级									
	设备序列 ZL2	4-NSQ1-0000-00	001407	固件版本	V00.80.18.0 {15:41:59}	04 (Mar 20 20	24}	硬件帮	該本 ZL_IC_N0_08	8_V00_NSQ1_1212	
	输出内容	☑ 时间	☑ 四元数	☑ 歐拉角	🗌 加速度	☑ 陀螺仪	🗌 磁力计	☑ 线性加速度	温度		
										确认	

备注:上位机更多的软件使用方面,请查阅 ModuleSuite 使用说明文 档。